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There are two experimental approaches to determidiiy°(OH), which produce values of this key
thermodynamic quantity that differ by 0.5 kcal/mol. The apparent uncertainty of the positive ion cycle
approach resides in the measurement of the appearance energy" dfddHH,O, while the uncertainty of

the spectroscopic approach resides in the determination of the dissociation energy dEOQHI@this note

we present an independent experimental determination of the appearance energy that confirms the accuracy
and enhances the precision of the existing positive ion cycle valutHg®(OH). We also present electronic
structure calculations of the OH{A") potential energy curve, which suggest that the extrapolation method
used to obtain the spectroscopic dissociation energy is in error. Finally, we present the largest ab initio electronic
structure calculations ever performed #H°(OH) that have an apparent uncertainty much less than 0.5
kcal/mol and support only the positive ion cycle value. Although all major thermochemical tables recommend
a value ofAH°(OH) based on the spectroscopic approach, the correct value is that of the positive ion cycle,
AHp°(OH) = 8.83+ 0.09 kcal/mol,Dg(H—OH) = 117.57+ 0.09 kcal/mol, ando(OH) = 101.794+ 0.09
kcal/mol.

Introduction complex systems, such as those common in atmospheric or

. L . combustion processes, contain hundreds of reactions, many of

The O-H bon_d dissociation energy of Wata‘?(H__OH)' IS which are sensitive to minute inaccuracies in the enthalpies of
of fundamental importance because of the ubiquity of the OH ¢ w00 ¢ o key highly reactive species such as OH.

radical in environmental, industrial, and combustion processes. The comprehensive thermochemical table by Gurvich &t al
Its correct value, together with the corresponding enthalpy of . . '
9 P 9 Ry gives the formation enthalpy of OH asH°(OH) = 9.35+

formation of hydroxyl radicalAHx°(OH), are crucial constitu- . )
- ; . 0.05 kcal/mol, from which the best availabl®y(H—OH)
ents of any serious thermochemical table because the propertie ’ : o
y prop cﬁecomes 118.08: 0.05 kcal/mol [assuming the acceptéd®

of many other species are measured with reference to this bon N o .
energy. Realistic models to describe the chemical behavior of Values for AHp°(H20) and AHp°(H)]. Gurvich et al use
Do(OH, X?I13) = 354204+ 15 cnm? (101.274 0.04 kcal/mol)

T Arqonne National Laborator of Carlone and Dallfy(see Table 1), which is based on a short
E pagciﬁc Northwest National géboratory_ extrapolation {-1.5 vibrational levels) oAGy-4/, of the AET
§ Washington State University. state, yieldingDg(OH, A%X+) = 188474 15 cnt! to O 1D,
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TABLE 1: Various Values for the 0 K Enthalpy of Formation of OH and Related Values for Do(H—0OH) and Do(OH)?

source AHio(OH)

Do(H—OH)

Do(OH)

Gurvich et al® following Carlone and Dallgy 9.354+ 0.05 kcal/mol

Barrow? 9.26+ 0.29 kcal/mol
JANAFf 9.18+ 0.29 kcal/mol
recommended values, present experifient 8.83+ 0.09 kcal/mol

present calculation 8.8F 0.16 kcal/mol

118.08: 0.05 kcal/mal
(41301 17 cnmY)
118.0& 0.29 kcal/mal
(412704 100 cnt)
117.9% 0.29 kcal/mol
(41240 100 cnrl)
117.5% 0.09 kcal/mol
(411204 30 cnTY)
117.6% 0.16 kcal/mal
(41135 55 cntd)

101.27+ 0.04 kcal/mol
(354204 15 cnT?)
101.36+ 0.29 kcal/mol
(35450+ 100 cnTY)
101.44+ 0.29 kcal/mol
(354804 100 cnt?)
101.79 0.09 kcal/mot
(356004 30 cnT?)
101.74+ 0.16 kcal/mol
(35585 55 cnm?)

aThe total atomization energy of water at 0 K is taken taM&.omizaionH20) = 219.355+ 0.024 kcal/mol (7672% 8 cnv'?t), from refs 1, 3
and 4; see also ref 8.Reference 1¢ Reference 6, spectroscopic determinatiorDgfOH). ¢ From AHatomizaionfH20) — Do(OH). © Reference 9,
spectroscopic determination B(OH). f References 4 and 7, see also ref 8n the basis of the present result £8H/H,0) = 18.1154 0.004
eV (in virtually perfect agreement with the slightly coarser value of 18 £X%008 eV from ref 12) and EI(OH¥ 104989+ 2 cn ! from ref 13.

h From AHammiZa[ionéHzo) - Do(H—OH).

To further substantiate their value, Carlone and Dalby measured Hypothesis b appears to be the least probable of the three,

Do(OD, AZET), producing a congruerio(OD), and forwarded

since close examination suggests that all relevant peaks of OH/

as additional corroborative evidence the patterns of broadeningOD are clearly visible in the photoelectron spectra, although

of rotational lines in OH and OD, attributed to predissociation.
Other more widely used thermochemical tables, such as JANAF
or the NIST-JANAF Tableslist AH©°(OH) = 9.18 4= 0.29

strong impurity signals congest the region of intefést’
Furthermore, rotationally resolved structure in the ZEKE
spectrun® serves as an effective fingerprint to distinguish OH

kcal/moP (see Table 1) because they reference an earlier from impurities, and the experimental difference IE(OB)

measurement oDo(OH, AZZ") by Barrow? that involves a

longer and therefore more uncertain extrapolation than the

IE(OH) = 96 + 3 cnr L is very close to the expected valtfe.
To distinguish between spectroscopic- and photoionization-

subsequent and more accurate measurements of Carlone anbdased values ofAH(°(OH), we have done three studies:

Dalby 8 Inexplicably, JANAP and NIST-JANAF lower without
referenc@the AHy°(OH) = 9.26 £ 0.29 kcal/mol value implied
by Barrow by 0.08 kcal/mol to arrive at the value quoted above.

In contrast to the recommende®y(H—OH) implied by
Gurvich et all the positive ion thermochemical cycle appears
to suggest a significantly lower value, as noted by Berkowitz
et al210 This is surprising, since the positive ion cycle has a
track record of yielding accurate and reliable experimental

(1) examined hypothesis ¢ by experimentally remeasuring
AEo(OH'/H,0) to eliminate problems such as a wavelength
calibration error or an inaccurate extrapolation of the onset, (2)
examined hypothesis a by carrying out ab initio electronic
structure calculations on OHEE™) to test the reliability of
the extrapolation method used by Carlone and Dalby to obtain
Do(OH, AZ=%), and (3) theoretically directly determined
AHs°(OH) to an uncertainity much less than 0.5 kcal/mol by

bond energies from photoionization and photoelectron measure-carrying out the highest level ab initio electronic structure

ments. In this case the cycle involveg K appearance energy
of the OH" fragment from water, AOH*/H,0), and the
adiabatic ionization energy of OH, IE(OH), from which
Do(H—0OH) = AEo(OH*/H,0) — IE(OH). AEo(OH*/H,0) was
initially reported! (without any correction for the internal
energy) as a “sharp onset” at 18.05 eV. McCulfdubsequently
performed a very detailed photoionization study, providing a
value AR(OH'/H,0) = 18.115+ 0.008 eV, which has not
been challenged since. IE(OH)1049894 2 cn ! = 13.01698
+ 0.00025 eV is known from a ZEKE study,which was
preceded 16 and followed” by other photoelectron studies
giving 13.01 eV. Earlier photoionization valu&s218which
are lower, are really indirect, hinging, inter alia, on auxiliary
thermochemical values, includingHi°(OH). Recent photo-
ionization studies of the OH radidéf?! also suggest lower
onsets, but that effect is attributed to rotational hot b&Ads.
Taking the best available valués!® AEqOH'/H,0) =
18.115+ 0.008 eV and IE(OH)= 13.0170+ 0.0003 eV,
results inDo(H—OH) = 117.56+ 0.18 kcal/mol, implying
AH;°(OH) = 8.83 + 0.18 kcal/mol andDo(OH) = 35600+
65 cnT! (101.794+ 0.18 kcal/mol). This value oAHg°(OH)

is more than 0.5 kcal/mol lower than that of Gurvich etlal.,

calculations ever performed on this system.

Studies of Hypothesis ¢

The basic photoionization apparatus used to remeasure
AEy(OH/H,0) has been recently described elsewlié&mall
Ne | emission lines superimposed on the He Hopfield continuum
provided an accurate internal energy calibration. The light
intensity was monitored by an external photomultiplier, coupled
to a sodium salicylate transducer. #8H"/H,O) was extracted
from fragment photoion yield curves by fitting with a model
function employing a procedure described in detail elsewtere.
The fit produces AR{OH'/H,O) = 18.1154+ 0.004 eV, in
perfect agreement with the value of McCullB\WVhile the level
of agreement is admittedly fortuitous, given the error bars, for
hypothesis c to hold, the threshold in question would need to
have other, more mysterious problems. However, presently it
is not clear what those problems might be.

Studies of Hypothesis a

The Birge-Sponer extrapolation used by Carlone and Dalby
to obtainDo(OH, AZZ*) is notorious for inaccuracies, particu-

and the difference is more than twice the sum of the error bars |arly when excited electronic states are udetHowever, the

assigned to the two values.

Carlone and Dalby extrapolation is extremely short and repro-

Such a large difference between the two values implies duces the expected isotope effect. To test this extrapolation,

that at least one of the following has to be true: (a) the spectro-

scopicDo(OH, A2Z™) is too low; (b) IE(OH) is too high; (c)
AEo(OH'/H,0) is too low.

multireference single and double excitation (CAB+2 with
Davidson correction) calculatiof'swere carried out on the
OH(A2Z") potential curve with an aug-cc-pV5Z basis et.



Letters J. Phys. Chem. A, Vol. 105, No. 1, 2003

The computed dissociation energy is not expected to be accuratenost comprehensive application leadsXg{OH) = 35420+

to more than~0.5 kcal/mol, but the number of bound levels in 15 cnt* and hencé\H;°(OH) = 9.354 0.05 kcal/mol. Contrary
both OH and OD is exactly the same (10 and 14, respectively) to this, the positive ion cycle approach, which is based on
as that deduced by Carlone and Datb#pplying the same photoionization and photoelectron measurements, leads to
Birge—Sponer extrapolation to the theoretical levels that are AH:°(OH) that is lower by~0.5 kcal/mol. In this study we
analogous to those directly measured by Carlone and Dalbyhave remeasured the key value entering the positive ion cycle,
produced an estimate Bi(OH, A2Z*) for the theoretical curve  namely the appearance energy of Olrfbm H,0O, and obtained
that was 115 cm! belowthat of the corresponding computed 18.115+ 0.004 eV, in complete accord with the slightly less
dissociation limit. This suggests that hypothesis a might well precise literature value. Together with the existing value for

be correct. the ionization energy of OH, the new measurement produces
. - . AHi(OH) = 8.83+ 0.09 kcal/mol. We have used high quality
Direct Ab Initio Calculation of AH°(OH) electronic structure calculations to critique the method used

To provide a completely independent determination of €xPerimentally to extract from the measured data the key
AHz(OH), CCSD(T)/aug-cc-pVnZ, ab initio electronic structure  Property in the spectroscopic approach, namely the dissociation
calculation@ 29were carried out for OH, OH and HO. These ~ €nergy of OH(AZ™). This critique indicates that the extrapola-
calculations are by far the highest-level ab initio electronic tON IS In errorin adlre_ct|on that supports the positive ion cycle
structure calculations ever done for this system. The calculationsV&/ue for AH°(OH). Finally, we present the highest level ab
were performed using MOLPRO, Gaussian 98, and ACESS||.  nitio electronic calculations ever performed on this system to
The geometries were optimized at the frozen core CCSD(T) directly calculateAH°(OH) to an error much less than the
level of theory. Frozen core energies were extrapolated to the difference between the two contending values. Only the positive

complete basis set limit energies by using a mixed exponential/ 1o" cycle value falls within the error bar of the cor_nputed value,
Gaussian expressi#from aug-cc-pvnZ § = T, Q, 5, 6) AHfo°(OH) =8.87+ Q.16 kcal/mol..Thus, we believe that the
sequences calculated at the RCCSB{Tvel for closed shell ~ best available experimental valueAsip(OH) = 8.83+ 0.09
and RIUCCSD(T¥ level for open shell speci@éCore/valence  Kcal/mol, based oio(H—OH) = 41126+ 30 cm* (117.57+
corrections were obtained from fully correlated cCSD(T) 0-09 kcal/mol) and implyingDo(OH) = 35600+ 30 cnrt
calculations with the cc-pCV5Z basis sets at the CCSD(T)/aug- (101.79+ 0.09 kcal/mol). The corresponding 298 K values are
cc-pVTZ geometries. Molecular scalar relativistic corrections AHr 208(OH) = 8.894 0.09 kcal/mol,Dogg(H—OH) = 118.79
were included using the uncontracted cc-pVQZ basis set and= 0-09 kcal/mol, andd29(OH) = 102.77+ 0.09 kcal/mol. A
the frozen core RCCSD(T) level of theory. Zero point energies forthcoming paper will provide a more detailed account of the
were taken from experiments and include anharmonic correc- _expgrlm_ental and computational results mentioned here and their
tions22.35 Corrections for higher order excitations were based Implications.
on full configuration interaction (FCI) using cc-pVTZ for OH
and OH', and cc-pVTZ on oxygen and cc-pVDZ on hydrogens ~ Acknowledgment. The work at Argonne National Labora-
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